Differential Equations

The increase in the principal amount kept at compound interest in a bank is proportional to the product of the principal amount and annual rate of interest.

  1. Annual rate of interest in a bank is 5%. How many years will it take to double the principal amount?

  2. At what annual rate of interest, the principal amount will double in 10 years?


Let the principal amount at any instant of time t be $= P$

Let the annual rate of interest $= R\% = \dfrac{R}{100} = r$

Increase in principal amount with time $= \dfrac{dP}{dt}$

$\therefore$ $\;$ As per question, $\;\;$ $\dfrac{dP}{dt} \propto Pr$

i.e. $\dfrac{dP}{dt} = k P r$ $\;\;\;$ [k is the constant of proportionality]

i.e. $\dfrac{dP}{P} = k \; r \; dt$

i.e. $\displaystyle \int \dfrac{dP}{p} = k \; r \int dt$

i.e. $\ln P = k \; r \; t + c$ $\;\;\;$ [c is the constant of integration] $\;\;\; \cdots \; (1)$

At time $t = 0$, initial amount $= P = P_0$

Substituting these values of $t$ and $P$ in equation $(1)$ give

$c = \ln P_0$ $\;\;\; \cdots \; (2)$

Substituting the value of $c$ from equation $(2)$ in equation $(1)$ gives

$\ln P = k \; r \; t + \ln P_0$

i.e. $\ln P - \ln P_0 = k \; r \; t$

i.e. $\ln \left(\dfrac{P}{P_0}\right) = k \; r \; t$

i.e. $\dfrac{P}{P_0} = e^{k\;r \; t}$ $\implies$ $P = P_0 \; e^{k \; r \; t}$ $\;\;\; \cdots \; (3)$

After 1 year, $t = 1$, $P = P_0 + P_0 \; r = P_0 \left(1 + r\right)$

Substituting these values of $t$ and $P$ in equation $(3)$ give

$P_0 \left(1 + r\right) = P_0 \; e^{k \; r}$

i.e. $e^{k \; r} = 1 + r$ $\implies$ $k \; r = \ln \left(1 + r\right)$ $\;\;\; \cdots \; (4)$

$\therefore$ $\;$ In view of equation $(4)$, equation $(3)$ becomes

$P = P_0 \; e^{t \; \ln \left(1 + r\right)}$

i.e. $P = P_0 \; e^{\ln \left(1 + r\right)^t}$

i.e. $P = P_0 \left(1 + r\right)^t$ $\implies$ $P = P_0 \left(1 + \dfrac{R}{100}\right)^t$ $\;\;\; \cdots \; (5)$ $\;\;$ $\left[\because \; r = \dfrac{R}{100}\right]$

  1. Given: Rate of interest $= R = 5\% = \dfrac{5}{100}$, $P = 2 P_0$

    Substituting these values in equation $(5)$ give

    $2 P_0 = P_0 \left(1 + \dfrac{5}{100}\right)^t$

    i.e. $2 = \left(1.05\right)^t$

    i.e. $\log \left(2\right) = t \; \log \left(1.05\right)$ $\implies$ $t = \dfrac{\log \left(2\right)}{\log \left(1.05\right)} = 14.2$

    $\therefore$ $\;$ It takes 14.2 years to double the principal when the rate of interest is 5%


  2. Given: Time $= t = 10$ years, Principal amount $= P = 2 P_0$

    Substituting these values in equation $(5)$ give

    $2 P_0 = P_0 \left(1 + \dfrac{R}{100}\right)^{10}$

    i.e. $2 = \left(1 + \dfrac{R}{100}\right)^{10}$

    i.e. $\log \left(2\right) = 10 \; \log \left(1 + \dfrac{R}{100}\right)$

    i.e. $\dfrac{1}{10} \times \log \left(2\right) = \log \left(1 + \dfrac{R}{100}\right)$

    i.e. $\log \left(2^{0.1}\right) = \log \left(1 + \dfrac{R}{100}\right)$

    i.e. $2^{0.1} = 1 + \dfrac{R}{100}$ $\implies$ $R = 100 \times \left(2^{0.1} - 1\right) = 7.2$

    $\therefore$ $\;$ Annual rate of interest $= 7.2\%$