Differential Equations

Find the particular solution of the differential equation $\;\;$ $\left(x^2 - 2y^2\right) \; dx + 2 \; x \; y \; dy = 0$ under the initial condition $y \left(1\right) = 1$


The given differential equation is $\;\;$ $\left(x^2 - 2y^2\right) \; dx + 2 \; x \; y \; dy = 0$

i.e. $2 \; x \; y \; dy = \left(2 y^2 - x^2\right) \; dx$

i.e. $\dfrac{dy}{dx} = \dfrac{2 y^2 - x^2}{2 \; x \; y}$

i.e. $\dfrac{dy}{dx} = \dfrac{y}{x} - \dfrac{x}{2y}$ $\;\;\; \cdots \; (1)$

Let $\dfrac{y}{x} = v$ $\;\;\; \cdots \; (2a)$

i.e. $y = v \; x$ $\;\;\; \cdots \; (2b)$

Differentiating equation $(2b)$ w.r.t $x$ gives

$\dfrac{dy}{dx} = v + x \; \dfrac{dv}{dx}$ $\;\;\; \cdots \; (2c)$

$\therefore$ $\;$ In view of equations $(2a)$ and $(2c)$, equation $(1)$ can be written as

$v + x \; \dfrac{dv}{dx} = v - \dfrac{1}{2 \; v}$

i.e. $x \; \dfrac{dv}{dx} = - \dfrac{1}{2 \; v}$

i.e. $2 \; v \; dv = - \dfrac{dx}{x}$ $\;\;\; \cdots \; (3)$

Integrating equation $(3)$ gives

$2 \displaystyle \int v \; dv = - \int \dfrac{dx}{x}$

i.e. $2 \times \dfrac{v^2}{2} = - \log \left|x\right| + c$

i.e. $v^2 = - \log \left|x\right| + c$ $\;\;\; \cdots \; (4)$

Substituting the value of $v$ from equation $(2a)$ in equation $(4)$ gives

$\left(\dfrac{y}{x}\right)^2 = - \log \left|x\right| + c$ $\;\;\; \cdots \; (5)$

Equation $(5)$ is the general solution of the given differential equation.

The initial condition is: when $x = 1$, $y = 1$

Substituting the initial condition in equation $(5)$ gives

$1 = - \log \left|1\right| + c$ $\implies$ $c = 1$

Substituting the value of $c$ in equation $(5)$ gives

$\left(\dfrac{y}{x}\right)^2 = - \log \left|x\right| + 1$

i.e. $\log \left|x\right| = 1 - \dfrac{y^2}{x^2}$

i.e. $x = e^{\left(1 - \frac{y^2}{x^2}\right)}$

i.e. $x = \dfrac{e}{e^{\left(\frac{y^2}{x^2}\right)}}$

i.e. $x \; e^{\left(\frac{y^2}{x^2}\right)} = e$ $\;\;\; \cdots \; (6)$

Equation $(6)$ is the particular solution of the given differential equation.