Differential Equations

Find the differential equation for the family of curves given by $\left(y - b\right)^2 = 4 \left(x - a\right)$ where a and b are arbitrary constants.


The given equation is $\left(y - b\right)^2 = 4 \left(x - a\right)$

i.e. $y^2 - 2 b y + b^2 = 4x - 4a$ $\;\;\; \cdots \; (1)$

Differentiating equation $(1)$ w.r.t x gives

$2 \; y \; \dfrac{dy}{dx} - 2 \; b \; \dfrac{dy}{dx} = 4$

i.e. $y \; \dfrac{dy}{dx} - b \; \dfrac{dy}{dx} = 2$ $\;\;\; \cdots \; (2)$

Differentiating equation $(2)$ w.r.t x gives

$y \; \dfrac{d^2 y}{dx^2} + \left(\dfrac{dy}{dx}\right)^2 - b \; \dfrac{d^2 y}{dx^2} = 0$

i.e. $\left(y - b\right) \; \dfrac{d^2 y}{dx^2} + \left(\dfrac{dy}{dx}\right)^2 = 0$ $\;\;\; \cdots \; (3)$

Now, from equation $(2)$ we have,

$\left(y - b\right) \; \dfrac{dy}{dx} = 2$

i.e. $\left(y - b\right) = \dfrac{2}{dy / dx}$ $\;\;\; \cdots \; (4)$

Substituting equation $(4)$ in equation $(3)$ gives

$\dfrac{2}{dy / dx} \; \left(\dfrac{d^2 y}{dx^2}\right) + \left(\dfrac{dy}{dx}\right)^2 = 0$

i.e. $2 \; \dfrac{d^2 y}{dx^2} + \left(\dfrac{dy}{dx}\right)^3 = 0$

is the required differential equation.