Applications of Definite Integration

Find the area of the region enclosed by the parabola $y^2 = x$ and the line $x + y = 2$.



The parabola $y^2= x$ and the line $x + y = 2$ intersect at the points $A \left(1,1\right)$ and $B \left(4,-2\right)$

Area enclosed between the parabola and the line is the region OABO.

$\text{Area} \left(OABO\right) = \text{Area} \left(RPB\right) - \left[\text{Area} \left(OAQO\right) + \text{Area} \left(QAR\right) + \text{Area} \left(OPBO\right)\right]$ $\;\;\; \cdots \; (1)$

Let $\text{Area} \left(RPB\right) = \left|I_1\right|$

$\begin{aligned} I_1 & = \int \limits_{y=-2}^{y=2} x \; dy \hspace{2em} \text{ where } \; x = 2 - y \\\\ & = \int \limits_{-2}^{2} \left(2 - y\right) \; dy \\\\ & = \left[2 y - \dfrac{y^2}{2}\right]_{-2}^{2} \\\\ & = 4 - \dfrac{4}{2} - \left(- 4 - \dfrac{4}{2}\right) = 8 \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(RPB\right) = 8$ sq units $\;\;\; \cdots \; (2)$

Let $\text{Area} \left(OAQO\right) = \left|I_2\right|$

$\begin{aligned} I_2 & = \int \limits_{y=0}^{y=1} x \; dy \hspace{2em} \text{ where } \; x = y^2 \\\\ & = \int \limits_{0}^{1} y^2 \; dy \\\\ & = \left[\dfrac{y^3}{3}\right]_{0}^{1} \\\\ & = \dfrac{1}{3} \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(OAQO\right) = \dfrac{1}{3}$ sq units $\;\;\; \cdots \; (3)$

Let $\text{Area} \left(QAR\right) = \left|I_3\right|$

$\begin{aligned} I_3 & = \int \limits_{y=1}^{y=2} x \; dy \hspace{2em} \text{ where } \; x = 2 - y \\\\ & = \int \limits_{1}^{2} \left(2 - y\right) \; dy \\\\ & = \left[2 y - \dfrac{y^2}{2}\right]_{1}^{2} \\\\ & = 4 - \dfrac{4}{2} - \left(2 - \dfrac{1}{2}\right) = \dfrac{1}{2} \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(QAR\right) = \dfrac{1}{2}$ sq units $\;\;\; \cdots \; (4)$

Let $\text{Area} \left(OPBO\right) = \left|I_4\right|$

$\begin{aligned} I_4 & = \int \limits_{y=-2}^{y=0} x \; dy \hspace{2em} \text{ where } \; x = y^2 \\\\ & = \int \limits_{-2}^{0} y^2 \; dy \\\\ & = \left[\dfrac{y^3}{3}\right]_{-2}^{0} \\\\ & = 0 - \left(\dfrac{-8}{3}\right) = \dfrac{8}{3} \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(OPBO\right) = \dfrac{8}{3}$ sq units $\;\;\; \cdots \; (5)$

$\therefore$ $\;$ In view of equations $(2)$, $(3)$, $(4)$ and $(5)$, equation $(1)$ becomes

$\text{Area} \left(OABO\right) = 8 - \left(\dfrac{1}{3} + \dfrac{1}{2} + \dfrac{8}{3}\right) = \dfrac{9}{2}$ sq units