Applications of Definite Integration

Using integration, find the area of the region $\left\{\left(x,y\right) \bigg| \left|x-1\right| \leq y \leq \sqrt{5 - x^2} \right\}$


When $x > 1$, $\left|x - 1\right| = x - 1$

When $x < 1$, $\left|x - 1\right| = - \left(x - 1\right) =1 - x$

$\therefore$ $\;$ The given region is

$\left\{\left(x,y\right) \bigg| \left(1 - x\right) \leq y \leq \sqrt{5 - x^2}, \; \left(x - 1\right) \leq y \leq \sqrt{5 - x^2} \right\}$

The equations represented by the inequation $\left(x - 1\right) \leq y \leq \sqrt{5 - x^2}$ $\;$ are

$x - 1 = y$ $\;\;\; \cdots \; (1a)$

$y = \sqrt{5 - x^2}$ $\;\;\; \cdots \; (1b)$

The equation represented by the inequation $\left(1 - x\right) \leq y$ is

$1 - x = y$ $\;\;\; \cdots \; (1c)$



Required area is the shaded region CABC.

$\text{Area} \left(CABC\right) = \text{Area} \left(PABQP\right) - \left[\text{Area} \left(PAC\right) + \text{Area} \left(CBQ\right)\right]$ $\;\;\; \cdots \; (2)$

Let $\text{Area} \left(PABQP\right) = \left|I_1\right|$

$\begin{aligned} I_1 & = \int \limits_{-1}^{2} y \; dx \hspace{3em} \text{where } \; y = \sqrt{5 - x^2} \\\\ & = \int \limits_{-1}^{2} \sqrt{5 - x^2} \; dx \\\\ & = \int \limits_{-1}^{2} \sqrt{\left(\sqrt{5}\right)^2 - \left(x\right)^2} \; dx \\\\ & \left[\text{Note: } \int \limits_{p}^{q} \sqrt{a^2 - x^2} \; dx = \left[\dfrac{x}{2} \sqrt{a^2 - x^2} + \dfrac{a^2}{2} \sin^{-1} \left(\dfrac{x}{a}\right)\right]_{p}^{q}\right] \\\\ & = \left[\dfrac{x}{2} \times \sqrt{5 - x^2} + \dfrac{5}{2} \sin^{-1} \left(\dfrac{x}{\sqrt{5}}\right)\right]_{-1}^{2} \\\\ & = \dfrac{2}{2} \times \sqrt{5 - 4} + \dfrac{5}{2} \sin^{-1} \left(\dfrac{2}{\sqrt{5}}\right) - \left[\dfrac{-1}{2} \times \sqrt{5 - 1} + \dfrac{5}{2} \sin^{-1} \left(\dfrac{-1}{\sqrt{5}}\right)\right] \\\\ & = 1 + \dfrac{5}{2} \sin^{-1} \left(\dfrac{2}{\sqrt{5}}\right) + \dfrac{1}{2} \times 2 + \dfrac{5}{2} \sin^{-1} \left(\dfrac{1}{\sqrt{5}}\right) \\\\ & = 2 + \dfrac{5}{2} \left[\sin^{-1} \left(\dfrac{2}{\sqrt{5}}\right) + \sin^{-1} \left(\dfrac{1}{\sqrt{5}}\right)\right] \\\\ & \left[\text{Note: } \sin^{-1}\left(x\right) + \sin^{-1} \left(y\right) = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2}\right)\right] \\\\ & = 2 + \dfrac{5}{2} \sin^{-1} \left(\dfrac{2}{\sqrt{5}} \times \sqrt{1 - \dfrac{1}{5}} + \dfrac{1}{\sqrt{5}} \times \sqrt{1 - \dfrac{4}{5}}\right) \\\\ & = 2 + \dfrac{5}{2} \sin^{-1} \left(\dfrac{2}{\sqrt{5}} \times \dfrac{2}{\sqrt{5}} + \dfrac{1}{\sqrt{5}} \times \dfrac{1}{\sqrt{5}}\right) \\\\ & = 2 + \dfrac{5}{2} \sin^{-1} \left(\dfrac{4}{5} + \dfrac{1}{5}\right) \\\\ & = 2 + \dfrac{5}{2} \sin^{-1} \left(1\right) \\\\ & = 2 + \dfrac{5}{2} \times \dfrac{\pi}{2} = 2 + \dfrac{5 \pi}{4} \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(PABQP\right) = 2 + \dfrac{5 \pi}{4}$ sq units $\;\;\; \cdots \; (3)$

Let $\text{Area} \left(PAC\right) = \left|I_2\right|$

$\begin{aligned} I_2 & = \int \limits_{-1}^{1} y \; dx \hspace{2em} \text{ where } \; y = 1-x \\\\ & = \int \limits_{-1}^{1} \left(1 - x\right) \; dx \\\\ & = \left[x - \dfrac{x^2}{2}\right]_{-1}^{1} \\\\ & = 1 - \dfrac{1}{2} - \left[-1 - \dfrac{1}{2}\right] = 2 \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(PAC\right) = 2$ sq units $\;\;\; \cdots \; (4)$

Let $\text{Area} \left(CBQ\right) = \left|I_3\right|$

$\begin{aligned} I_3 & = \int \limits_{1}^{2} y \; dx \hspace{2em} \text{ where } \; y = x-1 \\\\ & = \int \limits_{1}^{2} \left(x - 1\right) \; dx \\\\ & = \left[\dfrac{x^2}{2} - x\right]_{1}^{2} \\\\ & = \dfrac{4}{2} - 2 - \dfrac{1}{2} + 1 = \dfrac{1}{2} \end{aligned}$

$\therefore$ $\;$ $\text{Area} \left(CBQ\right) = \dfrac{1}{2}$ sq units $\;\;\; \cdots \; (5)$

$\therefore$ $\;$ In view of equations $(3)$, $(4)$ and $(5)$, equation $(2)$ becomes

$\text{Area} \left(CABC\right) = 2 + \dfrac{5 \pi}{4} - 2 - \dfrac{1}{2} = \dfrac{5 \pi}{4} - \dfrac{1}{2}$ sq units