Indefinite Integration

Evaluate $\displaystyle \int \dfrac{dx}{\left(x + 1\right)^2 \left(x^2 + 1\right)}$


Let $I = \displaystyle \int \dfrac{dx}{\left(x + 1\right)^2 \left(x^2 + 1\right)}$ $\;\;\;\cdots \; (1)$

Let $\dfrac{1}{\left(x + 1\right)^2 \left(x^2 + 1\right)} = \dfrac{A}{x + 1} + \dfrac{B}{\left(x + 1\right)^2} + \dfrac{C x + D}{x^2 + 1}$ $\;\;\; \cdots \; (2)$

$\begin{aligned} \text{i.e. } 1 & = A \left(x + 1\right) \left(x^2 + 1\right) + B \left(x^2 + 1\right) + \left(C x + D\right) \left(x + 1\right)^2 \\\\ & = A x^3 + A x^2 + A x + A + Bx^2 + B + C x^3 + 2 C x^2 + C x + D x^2 + 2 D x + D \\\\ & = x^3 \left(A + C\right) + x^2 \left(A + B + 2 C + D\right) + x \left(A + C + 2 D\right) + \left(A + B + D\right) \end{aligned}$

Comparing the constant term gives

$A + B + D = 1$ $\;\;\; \cdots \; (3a)$

Comparing the coefficients of the $x$ term gives

$A + C + 2 D = 0$ $\;\;\; \cdots \; (3b)$

Comparing the coefficients of the $x^2$ term gives

$A + B + 2 C + D = 0$ $\;\;\; \cdots \; (3c)$

Comparing the coefficients of the $x^3$ term gives

$A + C = 0$ $\implies$ $C = - A$ $\;\;\; \cdots \; (3d)$

Substituting equation $(3d)$ in equation $(3b)$ gives

$2 D = 0$ $\implies$ $D = 0$

Substituting the value of D in equation $(3a)$ gives

$A + B = 1$ $\;\;\; \cdots \; (4a)$

In view of equation $(3d)$ and $D = 0$, equation $(3c)$ becomes

$A + B -2 A = 0$ $\implies$ $B - A = 0$ $\;\;\; \cdots \; (4b)$

Adding equations $(4a)$ and $(4b)$ gives

$2 B = 1$ $\implies$ $B = \dfrac{1}{2}$

$\therefore$ From equation $(4b)$, $A = \dfrac{1}{2}$

$\therefore$ From equation $(3d)$, $C = \dfrac{-1}{2}$

Substituting the values of A, B, C and D in equation $(2)$ gives

$\dfrac{1}{\left(x + 1\right)^2 \left(x^2 + 1\right)} = \dfrac{1}{2 \left(x + 1\right)} + \dfrac{1}{2 \left(x + 1\right)^2} - \dfrac{x}{2 \left(x^2 + 1\right)}$ $\;\;\; \cdots \; (5)$

$\therefore$ In view of equation $(5)$, equation $(1)$ becomes

$I = \dfrac{1}{2} \displaystyle \int \dfrac{dx}{x + 1} + \dfrac{1}{2} \displaystyle \int \dfrac{dx}{\left(x + 1\right)^2} - \dfrac{1}{2} \displaystyle \int \dfrac{x \; dx}{x^2 + 1}$

i.e. $I = \dfrac{1}{2} \log \left|x + 1\right| - \dfrac{1}{2 \left(x + 1\right)} - \dfrac{1}{2} \displaystyle \int \dfrac{x \; dx}{x^2 + 1}$ $\;\;\; \cdots \; (6)$

Consider $\displaystyle \int \dfrac{x \; dx}{x^2 + 1}$ $\;\;\; \cdots \; (7)$

Let $x^2 + 1 = t$ $\;\;\; \cdots \; (7a)$

Differentiating equation $(7a)$ gives

$2 x \; dx = dt$ $\implies$ $x \; dx = \dfrac{dt}{2}$ $\;\;\; \cdots \; (7b)$

$\therefore$ $\;$ In view of equations $(7a)$ and $(7b)$, equation $(7)$ becomes

$\begin{aligned} \displaystyle \int \dfrac{x \; dx}{x^2 + 1} & = \dfrac{1}{2} \displaystyle \int \dfrac{dt}{t} \\\\ & = \dfrac{1}{2} \log \left|t\right| + c \\\\ & = \dfrac{1}{2} \log \left|x^2 + 1\right| + c \;\;\; \cdots \; (8) \;\;\; \left[\text{from equation }(7a)\right] \end{aligned}$

$\therefore$ $\;$ We have from equations $(6)$ and $(8)$

$I = \dfrac{1}{2} \log \left|x + 1\right| - \dfrac{1}{2 \left(x + 1\right)} - \dfrac{1}{4} \log \left|x^2 + 1\right| + c$