Definite Integration

Evaluate $\displaystyle \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1}{1 + \sqrt{\cot x}} \; dx$


$\begin{aligned} \text{Let } I & = \displaystyle \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1}{1 + \sqrt{\cot x}} \; dx \;\;\; \cdots \; (1) \\\\ & = \displaystyle \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1}{1 + \sqrt{\cot \left(\dfrac{\pi}{6} + \dfrac{\pi}{3} - x\right)}} \; dx \\\\ & \left[\text{Note: } \int \limits_{a}^{b} f\left(x\right) \; dx = \int \limits_{a}^{b} f \left(a + b - x\right) \; dx\right] \\\\ & = \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1}{1 + \sqrt{\cot \left(\dfrac{\pi}{2} - x\right)}} \; dx \\\\ & = \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1}{1 + \sqrt{\tan x}} \; dx \\\\ & = \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1}{1 + \dfrac{1}{\sqrt{\cot x}}} \; dx \\\\ & = \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{\sqrt{\cot x}}{\sqrt{\cot x} + 1} \; dx \;\;\; \cdots \; (2) \end{aligned}$

Adding equations $(1)$ and $(2)$ gives

$2 I = \displaystyle \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1 + \sqrt{\cot x}}{1 + \sqrt{\cot x}} \; dx$

i.e. $2 I = \int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} dx = \left[x\right]_{\pi / 6}^{\pi / 3} = \dfrac{\pi}{3} - \dfrac{\pi}{6} = \dfrac{\pi}{6}$

$\implies$ $I = \dfrac{\pi}{12}$