Applications of Definite Integration

Find the area bounded by the parabola $y = x^2 - 4$, the X axis and the lines $x = -1$ and $x = 2$.



Given: $y = x^2 - 4$ $\;\;\; \cdots \; (1)$

Required area (shaded portion in the figure) $= \left|I\right|$ where

$\begin{aligned} I & = \int \limits_{-1}^{2} y \; dx \\\\ & = \int \limits_{-1}^{2} \left(x^2 - 4\right) \; dx \hspace{3em} \left[\text{From equation }(1) \right] \\\\ & = \left[\dfrac{x^3}{3} - 4 x\right]_{-1}^{2} \\\\ & = \dfrac{2^3}{3} - 4 \times 2 - \dfrac{\left(-1\right)^3}{3} + 4 \times \left(-1\right) \\\\ & = - 9 \end{aligned}$

$\therefore$ Required area $= \left|I\right| = 9$ square units