Indefinite Integration

Evaluate $\int \cos^{-1}x \; dx$ $\;\;\;$ $x \in \left[- 1 , 1\right]$


Let $I = \int \cos^{-1}x \; dx = \int 1 \cdot \cos^{-1}x \; dx$

$\left[\text{Note: } \displaystyle \int u \cdot v \; dx = u \int v \; dx - \int \left\{\int v \; dx \times \dfrac{d}{dx} \left(u\right) \right\} \; dx \right]$

Here $u = \cos^{-1} x$ and $v = 1$

$\begin{aligned} \therefore \; I & = \cos^{-1} x \int dx - \int \left\{\int dx \times \dfrac{d}{dx} \left(\cos^{-1}x\right) \right\} \; dx \\\\ & = x \; \cos^{-1} x + \int \dfrac{x}{\sqrt{1 - x^2}} \; dx \;\;\; \cdots (1) \\\\ & \left[\text{Note: } \dfrac{d}{dx} \left(\cos^{-1}x\right) = \dfrac{-1}{\sqrt{1 - x^2}} \right] \end{aligned}$

Consider $\displaystyle \int \dfrac{x}{\sqrt{1 - x^2}} \; dx$ $\;\;\; \cdots$ (2)

Let $1 - x^2 = u$ $\;\;\; \cdots$ (2a)

Differentiating equation (2a) gives

$- 2 x \; dx = du$ $\implies$ $x \; dx = \dfrac{- du}{2}$ $\;\;\; \cdots$ (2b)

In view of equations (2a) and (2b), equation (2) becomes

$\begin{aligned} \int \dfrac{x \; dx}{\sqrt{1 - x^2}} & = \dfrac{-1}{2} \int \dfrac{du}{\sqrt{u}} \\\\ & = \dfrac{-1}{2} \times u^{1/2} \times 2 + c \\\\ & = - \sqrt{u} + c \\\\ & = - \sqrt{1 - x^2} + c \;\;\; \left[\text{From equation (2a)}\right] \;\;\; \cdots (3) \end{aligned}$

In view of equation (3), equation (1) becomes,

$I = x \cos^{-1} x - \sqrt{1 - x^2} + c$