Application of Derivatives: Increasing Decreasing Functions

Find the intervals in which the function $f\left(x\right) = \sin x - \cos x$, $0 < x < 2 \pi$ is increasing or decreasing.


$f\left(x\right) = \sin x - \cos x$

$\begin{aligned} \therefore \; f'\left(x\right) & = \cos x + \sin x \\ & = \sqrt{2}\left(\dfrac{1}{\sqrt{2}} \cos x + \dfrac{1}{\sqrt{2}} \sin x\right) \\ & = \sqrt{2} \left(\sin \dfrac{\pi}{4} \cos x + \cos \dfrac{\pi}{4} \sin x\right) \\ & = \sqrt{2} \sin \left(\dfrac{\pi}{4} + x\right) \end{aligned}$

$\therefore$ $\;$ $f'\left(x\right) = 0$ $\implies$ $\sin \left(\dfrac{\pi}{4} + x\right) = 0$

i.e. $\sin \left(\dfrac{\pi}{4} + x\right) = \sin 0 \;\; \text{OR} \;\; \sin \pi \;\; \text{OR} \;\; \sin 2 \pi$

$\implies$ $x = - \dfrac{\pi}{4}$ OR $x = \pi - \dfrac{\pi}{4} = \dfrac{3\pi}{4}$ OR $x = 2 \pi - \dfrac{\pi}{4} = \dfrac{7\pi}{4}$

Since $0 < x < 2 \pi$, $\;$ $x = - \dfrac{\pi}{4}$ is not a valid solution.

The points $x = \dfrac{3\pi}{4}$ and $x = \dfrac{7\pi}{4}$ divide the interval $0 < x < 2 \pi$ into three intervals namely $\left(0,\dfrac{3\pi}{4}\right)$, $\left(\dfrac{3\pi}{4},\dfrac{7\pi}{4}\right)$ and $\left(\dfrac{7\pi}{4},2\pi\right)$


Interval Sign of $\sin \left(\dfrac{\pi}{4} + x\right)$ Nature of function f
$\left(0,\dfrac{3\pi}{4}\right)$ +ve Increasing
$\left(\dfrac{3\pi}{4},\dfrac{7\pi}{4}\right)$ -ve Decreasing
$\left(\dfrac{7\pi}{4}, 2 \pi\right)$ +ve Increasing

$\therefore$ $f\left(x\right)$ is increasing in the interval $\left\{x : 0< x < \dfrac{3\pi}{4}\right\} \cup \left\{x : \dfrac{7\pi}{4}< x < 2\pi\right\} $

$f\left(x\right)$ is decreasing in the interval $\left\{x : \dfrac{7\pi}{4} < x < 2\pi\right\} $