Application of Derivatives: Increasing Decreasing Functions

Find the intervals in which the function $f\left(x\right) = \left(x+1\right)^2 \left(x-3\right)^3$ is increasing or decreasing.


$f\left(x\right) = \left(x+1\right)^2 \left(x-3\right)^3$

$\therefore$ $f'\left(x\right) = 3 \left(x+1\right)^2 \left(x-3\right)^2 + 2 \left(x+1\right) \left(x-3\right)^3$

i.e. $f'\left(x\right) = \left(x+1\right) \left(x-3\right)^2 \left[3\left(x+1\right) +2 \left(x-3\right)\right]$

i.e. $f'\left(x\right) = \left(x+1\right) \left(x-3\right)^2 \left(5x-3\right)$

Now, $\left(x-3\right)^2 > 0 \; \forall \; x$

For critical points, $f'\left(x\right) = 0$

$\implies$ $x+1 = 0$ $\implies$ $x=-1$

or $\left(x-3\right)^2 =0$ $\implies$ $x=3$

or $5x-3=0$ $\implies$ $x=\dfrac{3}{5}$

These points divide the real line into four intervals namely $\left(-\infty, -1\right)$, $\left(-1, \dfrac{3}{5}\right)$, $\left(\dfrac{3}{5},3\right)$ and $\left(3,\infty\right)$


Interval Sign of $\left(x+1\right)$ Sign of $\left(5x-3\right)$ Sign of $f'\left(x\right)$ Nature of function f
$\left(-\infty,-1\right)$ -ve -ve +ve Increasing
$\left(-1,\dfrac{3}{5}\right)$ +ve -ve -ve Decreasing
$\left(\dfrac{3}{5},3\right)$ +ve +ve +ve Increasing
$\left(3,\infty\right)$ +ve +ve +ve Increasing

$\therefore$ $f\left(x\right)$ is increasing in the interval $\left\{x : x<-1\right\} \cup \left\{x : x>\dfrac{3}{5}\right\} $

$f\left(x\right)$ is decreasing in the interval $\left\{x : -1 < x < \dfrac{3}{5}\right\} $