Application of Derivatives: Increasing Decreasing Functions

Determine the intervals in which $f:R \rightarrow R$, $f\left(x\right) = 2 \cos x + \sin^2 x$ is strictly increasing or strictly decreasing.


$f\left(x\right) = 2 \cos x + \sin^2 x$

$\therefore$ $f'\left(x\right) = -2 \sin x + 2 \sin x \cos x$

i.e. $f'\left(x\right) = -2 \sin x \left(1 - \cos x\right) $

i.e. $f'\left(x\right) = -2 \sin x \times 2 \sin^2 \left(\dfrac{x}{2}\right)$

i.e. $f'\left(x\right) = -4 \sin x \sin^2 \left(\dfrac{x}{2}\right)$ $\;\; \cdots$ (1)

Now, $\sin^2 \left(\dfrac{x}{2}\right) > 0 \;\; \forall \; x \in R$

When $f'\left(x\right) > 0$ $\implies$ $f\left(x\right)$ is increasing.

Now, from equation (1), $f'\left(x\right) > 0$ $\implies$ $\sin x < 0$

$\implies$ $- \pi < x < 0$

Generalizing, we have $\left(2 k - 1\right)\pi < x < 2 k \pi$

i.e. $f\left(x\right)$ is strictly increasing in the interval $\left(\left(2 k - 1\right)\pi, 2 k \pi\right), \;\; k \in Z$

When $f'\left(x\right) < 0$ $\implies$ $f\left(x\right)$ is decreasing.

Now, from equation (1), $f'\left(x\right) < 0$ $\implies$ $\sin x > 0$

$\implies$ $0 < x < \pi$

Generalizing, we have $2 k \pi < x < \left(2 k + 1\right) \pi$

i.e. $f\left(x\right)$ is strictly decreasing in the interval $\left(2 k \pi, \left(2 k + 1 \right) \pi \right), \;\; k \in Z$