Application of Derivatives: Increasing Decreasing Functions

Find the values of x for which $y = \left[x\left(x-2\right)\right]^2$ is an increasing function.


$y = \left[x\left(x-2\right)\right]^2$

$\therefore$ $\dfrac{dy}{dx}= 2 x \left(x-2\right) \left(x+x-2\right)$

i.e. $\dfrac{dy}{dx}= 4x \left(x-2\right) \left(x-1\right)$

$\dfrac{dy}{dx}=0$ $\implies$ $x=0$, $x=2$, $x=1$

These points divide the real line into four disjoint intervals namely $\left(-\infty,0\right)$, $\left(0,1\right)$, $\left(1,2\right)$ and $\left(2,\infty\right)$


Interval Sign of $\dfrac{dy}{dx}$ Nature of function y
$\left(-\infty,0\right)$ -ve Decreasing
$\left(0,1\right)$ +ve Increasing
$\left(1,2\right)$ -ve Decreasing
$\left(2,\infty\right)$ +ve Increasing

$\therefore$ y is increasing in the intervals $\left(0,1\right)$ and $\left(2,\infty\right)$.