Application of Derivatives: Increasing Decreasing Functions

Find the least value of $a$ such that the function f given by $f\left(x\right) = x^2 +ax + 1$ is strictly increasing on $\left(1,2\right)$.


$f\left(x\right) = x^2 + ax + 1$

i.e. $f'\left(x\right) = 2x + a$

Since $f\left(x\right)$ is a strictly increasing function $\implies$ $f'\left(x\right) > 0$

i.e. $2 x + a > 0$ $\implies$ $x > -\dfrac{a}{2}$

i.e. To find $x > \dfrac{-a}{2}$ when x is in the interval $\left(1,2\right)$

i.e. To find $x > \dfrac{-a}{2}$ when $1 < x < 2$

Least value of x is 1.

$\therefore$ Least value of a is obtained when $x = 1$

$\therefore$ We have, $1 = \dfrac{-a}{2}$ $\implies$ $a = -2$

$\therefore$ The least value of $a = -2$.