Application of Derivatives: Increasing Decreasing Functions

Prove that the function given by $f\left(x\right) = x^3 - 3x^2 +3x - 100$ is increasing in $\mathbb{R}$.


$f\left(x\right) = x^3 -3x^2 + 3x -100$

$\begin{aligned} \therefore f'\left(x\right) & = 3x^2 -6x +3 \\ & = 3 \left(x^2 -2x +1\right) \\ & = 3 \left(x-1\right)^2 \end{aligned}$

Now, $\left(x-1\right)^2 > 0 \; \forall \; \mathbb{R}$

$\therefore$ $3 \left(x-1\right)^2 > 0 \; \forall \; \mathbb{R}$

$\implies$ $f'\left(x\right) > 0 \; \forall \; \mathbb{R}$

$\implies$ $f\left(x\right)$ is strictly increasing in $\mathbb{R}$.