Differentiation

If $f\left(x\right)=\begin{vmatrix} x & \sin x & \cos x \\ x^2 & \tan x & -x^3 \\ 2x & \sin 2x & 5x \end{vmatrix}$, $\;$ show that $\lim\limits_{x \to 0} \dfrac{f'\left(x\right)}{x}=-4$


$f'\left(x\right) = \begin{vmatrix} 1 & \sin x & \cos x \\ 2x & \tan x & -x^3 \\ 2 & \sin 2x & 5x \end{vmatrix} + \begin{vmatrix} x & \cos x & \cos x \\ x^2 & \sec^2 x & -x^3 \\ 2x & 2\cos 2x & 5x \end{vmatrix} + \begin{vmatrix} x & \sin x & -\sin x \\ x^2 & \tan x & -3x^2 \\ 2x & \sin 2x & 5 \end{vmatrix}$

$\therefore$ $\;$ $\dfrac{f'\left(x\right)}{x} = \begin{vmatrix} 1 & \sin x & \cos x \\ 2 & \tan x / x & -x^2 \\ 2 & \sin 2x & 5x \end{vmatrix} + \begin{vmatrix} 1 & \cos x & \cos x \\ x & \sec^2 x & -x^3 \\ 2 & 2 \cos 2x & 5x \end{vmatrix}+ \begin{vmatrix} 1 & \sin x & -\sin x \\ x & \tan x & -3x^2 \\ 2 & \sin 2x & 5 \end{vmatrix}$

$\begin{aligned} \therefore \; \lim\limits_{x \to 0} \dfrac{f'\left(x\right)}{x} & = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 2 & 0 \end{vmatrix}+ \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \end{vmatrix} \\ & = -2 -2 + 0 \\ & =-4 \end{aligned}$