Differentiation

Differentiate $\cos^{-1}\left(\dfrac{1-x^2}{1+x^2}\right)$ with respect to $\tan^{-1}\left(\dfrac{3x-x^3}{1-3x^2}\right)$


$\left[\begin{aligned} \text{Note: } & \tan 3\theta = \dfrac{3 \tan \theta - \tan^3 \theta}{1-3\tan^2 \theta} \\ & \cos 2\theta = \dfrac{1-\tan^2 \theta}{1+\tan^2 \theta} \end{aligned}\right]$

Let $u = \cos^{-1}\left(\dfrac{1-x^2}{1+x^2}\right)$, $v = \tan^{-1}\left(\dfrac{3x-x^3}{1-3x^2}\right)$

Then $\dfrac{du}{dv} = \dfrac{du/dx}{dv/dx} \;\; \cdots$ (1)

Let $x=\tan \alpha \;\; \cdots$ (2)

Differentiating equation(2) with respect to $\alpha$ gives

$\dfrac{dx}{d\alpha} = \sec^2 \alpha \;\; \cdots$ (3)

In view of equation (2), u becomes

$\begin{aligned} u & = \cos^{-1}\left(\dfrac{1-\tan^2 \alpha}{1+\tan^2 \alpha}\right) \\ & = \cos^{-1} \left(\cos 2 \alpha\right) \\ & = 2\alpha \end{aligned}$

$\therefore$ $\;$ $\dfrac{du}{d\alpha} = 2$ $\; \cdots$ (4)

In view of equation (2), v becomes

$\begin{aligned} v & = \tan^{-1}\left(\dfrac{3\tan \alpha - \tan^3 \alpha}{1-3\tan^2 \alpha}\right) \\ & = \tan^{-1} \left(\tan 3 \alpha\right) \\ & = 3\alpha \end{aligned}$

$\therefore$ $\;$ $\dfrac{dv}{d\alpha} = 3$ $\; \cdots$ (5)

Now, $\dfrac{du}{dx} = \dfrac{du / d\alpha}{dx / d\alpha} = \dfrac{2}{\sec^2 \alpha}$ $\;\; \cdots$ (6) [from equations (3) and (4)]

and $\dfrac{dv}{dx} = \dfrac{dv / d\alpha}{dx / d\alpha} = \dfrac{3}{\sec^2 \alpha}$ $\;\; \cdots$ (7) [from equations (3) and (5)]

$\therefore$ $\;$ In view of equations (6) and (7) equation (1) becomes

$\dfrac{du}{dv}= \dfrac{2 / \sec^2 \alpha}{3 / \sec^2 \alpha} = \dfrac{2}{3}$