Processing math: 70%

Application of Derivatives: Approximations

Find the approximate value of cos(11π36), assuming the value of cos(π3).


Let y=cosx (1)

Let x=π3, Δx=π36 so that

(x+Δx)=π3π36=11π36 (2)

Now Δy=cos(x+Δx)cosx

i.e. Δy=cos(11π36)cos(π3)

i.e. cos(11π36)=Δy+cos(π3)

i.e cos(11π36)=Δy+12 (3)

Differentiating equation (1) w.r.t x gives

dydx=sinx=sin(π3)=32 (4)

Now Δy is approximately equal to dy and

dy=(dydx)×Δx=32×(π36)=π372 [from equations (2) and (4)]

\Delta y \approx dy = \dfrac{\pi \sqrt{3}}{72} \;\; \cdots (5)

\therefore We have from equations (3) and (5)

\cos \left(\dfrac{11 \pi}{36}\right) = \dfrac{\pi \sqrt{3}}{72} + \dfrac{1}{2}