Application of Derivatives: Tangents and Normals

For the curve $y=x^2+3x+4$, find all the points at which the tangent passes through the origin.


$y=x^2+3x+4$ $\;\; \cdots$ (1)

Differentiating equation (1) w.r.t x gives

$\dfrac{dy}{dx}=2x+3$

The required tangent passes through the origin $\left(0,0\right)$

$\therefore$ $\;$ Equation of tangent is

$y-0 = \left(2x+3\right) \left(x-0\right)$

i.e. $y=2x^2 + 3x$ $\;\; \cdots$ (2)

Solving equations (1) and (2) simultaneously gives

$2x^2 + 3x = x^2 + 3x + 4$

i.e. $x^2 = 4$ $\implies$ $x = \pm 2$

Substituting the value of x in equation (1) gives

when $x=+2$, $y= \left(2\right)^2 + 3 \times 2 + 4 = 14$

when $x=-2$, $y = \left(-2\right)^2 + 3 \times \left(-2\right) + 4 = 2$

$\therefore$ $\;$ The required points are $\left(2,14\right)$ and $\left(-2,2\right)$