Application of Derivatives: Tangents and Normals

Show that the curves $xy=a^2$ and $x^2+y^2=2a^2$ touch each other.


The two curves are

$xy=a^2$ $\implies$ $x = \dfrac{a^2}{y}$ $\;\; \cdots$ (1)

$x^2 + y^2 = 2a^2$ $\implies$ $\left(\dfrac{a^2}{y}\right)^2 + y^2 = 2a^2$ [in view of equation (1)]

i.e. $a^4 + y^4 = 2a^2 y^2$

i.e. $y^4 - 2a^2 y^2 +a^4 =0$

i.e. $\left(y^2-a^2\right)^2 = 0$

i.e. $y^2 -a^2 =0$ $\implies$ $y^2 = a^2$ $\implies$ $y = \pm a$

$\therefore$ $\;$ From equation (1),

when $y = a$, $x=a$ and

when $y = -a$, $x=-a$

$\therefore$ $\;$ The given curves intersect each other at the points $\left(a,a\right)$ and $\left(-a,-a\right)$

Differentiating $xy=a^2$ w.r.t x gives

$x \dfrac{dy}{dx}+y=0$

i.e. $\dfrac{dy}{dx}=\dfrac{-y}{x}$

$\therefore$ $\;$ $\dfrac{dy}{dx}\bigg|_{\left(a,a\right)}= \dfrac{-a}{a}=-1=m_1 \left(\text{say}\right)$ $\;\; \cdots$ (2)

Differentiating $x^2 + y^2 = 2a^2$ w.r.t x gives

$2x+2y\dfrac{dy}{dx}=0$

i.e. $\dfrac{dy}{dx}=\dfrac{-x}{y}$

$\therefore$ $\;$ $\dfrac{dy}{dx}\bigg|_{\left(a,a\right)}= \dfrac{-a}{a}=-1 = m_2 \left(\text{say}\right)$ $\;\; \cdots$ (3)

Let $\phi$ be the angle between the two tangents.

Then $\tan \phi = \left|\dfrac{m_1 - m_2}{1+m_1 m_2}\right| = \left|\dfrac{-1+1}{1+\left(-1\right)\left(-1\right)}\right|=0$

$\implies$ $\phi = 0$

i.e. the two tangents touch each other.

$\implies$ The two curves touch each other.