Limits

Find $\lim\limits_{x \to 0} \; \dfrac{3x + \left|x\right|}{2x-\left|x\right|}$, if it exists.


When $x>0, \; \left|x\right|=+x$

When $x<0, \; \left|x\right|=-x$

$\begin{aligned} \therefore \lim\limits_{x \to 0} \; \dfrac{3x+\left|x\right|}{2x-\left|x\right|} & = \lim\limits_{x \to 0^+} \; \dfrac{3x+x}{2x-x} \;\; for \; x > 0 \\ & = \lim\limits_{x \to 0^+} \; \dfrac{4x}{x} \\ & = \lim\limits_{x \to 0^+} 4 = 4 \end{aligned}$

$\begin{aligned} \text{Also, } \lim\limits_{x \to 0} \; \dfrac{3x+\left|x\right|}{2x-\left|x\right|} & = \lim\limits_{x \to 0^-} \; \dfrac{3x-x}{2x+x} \;\; for \; x < 0 \\ & = \lim\limits_{x \to 0^-} \; \dfrac{2x}{3x} \\ & = \lim\limits_{x \to 0^-} \dfrac{2}{3} = \dfrac{2}{3} \end{aligned}$

$\therefore$ $\lim\limits_{x \to 0^+} \; \dfrac{3x+\left|x\right|}{2x-\left|x\right|} \neq \lim\limits_{x \to 0^-} \; \dfrac{3x+\left|x\right|}{2x-\left|x\right|}$

$\implies$ $\lim\limits_{x \to 0} \; \dfrac{3x+\left|x\right|}{2x-\left|x\right|}$ does not exist.