Limits

Evaluate: $\lim\limits_{x \to \infty} \; \left[x-\sqrt{x^2+x}\right]$


Let $x = \dfrac{1}{y}$
Then, as $x \to \infty, \; y \to 0$
$\begin{aligned} \therefore \lim\limits_{x \to \infty} \; \left[x-\sqrt{x^2+x}\right] & = \lim\limits_{y \to 0} \; \left[\dfrac{1}{y}-\sqrt{\dfrac{1}{y^2}+\dfrac{1}{y}}\right] \\ & = \lim\limits_{y \to 0} \; \left[\dfrac{1}{y}-\dfrac{\sqrt{1+y}}{y}\right] \\ & = \lim\limits_{y \to 0} \; \left[\dfrac{1-\sqrt{1+y}}{y}\right] \\ & = \lim\limits_{y \to 0} \; \left[\dfrac{\left(1-\sqrt{1+y}\right) \left(1+\sqrt{1+y}\right)}{y \left(1+\sqrt{1+y}\right)}\right] \\ & = \lim\limits_{y \to 0} \; \dfrac{1-1-y}{y\left(1+\sqrt{1+y}\right)} \\ & = \lim\limits_{y \to 0} \; \dfrac{-1}{1+\sqrt{1+y}} \\ & = \dfrac{-1}{1+\sqrt{1+0}} = \dfrac{-1}{2} \end{aligned}$