Processing math: 28%

Differentiation

f(x)=x5sgnx, where sgnx={|x|x,x00,x=0 (sgnx is the signum function) Examine the continuity and differentiability of f(x) at x=0.


|x|={x,x>0x,x<0



\begin{aligned} \therefore \; f\left(x\right) = x^5 \text{sgn} \; x = \begin{cases} x^5, & x > 0 \\ -x^5, & x < 0 \\ 0, & x=0 \end{cases} \end{aligned}

\begin{aligned} \text{Left Hand Derivative } \left(\text{at }x=0\right) = Lf'\left(0\right) & = \lim\limits_{h \to 0} \; \dfrac{f\left(0-h\right)-f\left(0\right)}{-h} \\ & = \lim\limits_{h \to 0} \; \dfrac{-\left(-h\right)^5 - 0}{-h} \\ & = \lim\limits_{h \to 0} \; \left(-h^4\right) = 0 \end{aligned}

\begin{aligned} \text{Right Hand Derivative } \left(\text{at }x=0\right) = Rf'\left(0\right) & = \lim\limits_{h \to 0} \; \dfrac{f\left(0+h\right)-f\left(0\right)}{h} \\ & = \lim\limits_{h \to 0} \; \dfrac{h^5 - 0}{h} \\ & = \lim\limits_{h \to 0} \; \left(h^4\right) = 0 \end{aligned}

\therefore \; Lf'\left(0\right) = Rf'\left(0\right) = 0

\implies f\left(x\right) is differentiable at x=0

\because \; f\left(x\right) is differentiable at x=0, f\left(x\right) is also continuous at x=0.