Differentiation

Let $f\left(x\right) = \begin{cases} 0, & x < 0 \\ x^2, & x \geq 0 \end{cases}$ $\;\;\;$ Check the differentiability of $f\left(x\right)$ at $x=0$.


$\begin{aligned} \text{Left Hand Derivative} = Lf'\left(0\right) & = \lim\limits_{h \to 0} \; \dfrac{f\left(0-h\right)-f\left(0\right)}{-h} \\ & = \lim\limits_{h \to 0} \; \dfrac{0-0}{-h} \\ & = 0 \end{aligned}$

$\begin{aligned} \text{Right Hand Derivative} = Rf'\left(0\right) & = \lim\limits_{h \to 0} \; \dfrac{f\left(0+h\right)-f\left(0\right)}{h} \\ & = \lim\limits_{h \to 0} \; \dfrac{\left(0+h\right)^2-0}{h} \\ & = \lim\limits_{h \to 0} \; h \\ & = 0 \end{aligned}$

Since $Lf'\left(0\right) = Rf'\left(0\right)$, $f\left(x\right)$ is differentiable at $x=0$.