Discuss the continuity of the function f(x)={x−|x|x,x≠02,x=0 at x=0
When x>0,|x|=+x
When x<0,|x|=−x
lim
\lim\limits_{x \to 0^-}f\left(x\right)=\lim\limits_{x \to 0} \; \dfrac{x+x}{x}=\dfrac{2x}{x}=2
f\left(0\right)=2
Since \lim\limits_{x \to 0^-}f\left(x\right)=f\left(0\right) \neq \lim\limits_{x \to 0^+}f\left(x\right), function f\left(x\right) is discontinuous at x=0.