Matrices

If $A=$ $\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ and $I =$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find k so that $A^2 = 5A + kI$


$A^2 = A \times A$
$=\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ $\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} =$ $\begin{pmatrix} 3 \times 3 + 1 \times \left(-1\right) & 3 \times 1 + 1 \times 2 \\ -1 \times 3 + 2 \times \left(-1\right) & -1 \times 1 + 2 \times 2 \end{pmatrix}$

$=\begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix}$

$5A = 5$ $\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = $ $\begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix}$

$kI = k$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$ $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$

$\therefore$ $A^2 = 5A + kI \implies$ $\begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} =$ $\begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} +$ $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$

i.e. $\begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} =$ $\begin{pmatrix} 15+k & 5 \\ -5 & 10+k \end{pmatrix}$

$\implies 8 = 15+k \implies k = -7$