Matrices

Given: $\begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix} M = 6I$, where M is a matrix and I is an unit matrix of order $2 \times 2$.
State the order of matrix M.
Find the matrix M.


Order of matrix $M = 2 \times 2$

Let $M=$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $I=$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$ unit matrix

$\therefore$ $\begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix} M = 6 I \implies$ $\begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 6$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

i.e. $\begin{pmatrix} 4a + 2c & 4b+2d \\ -a+c & -b+d \end{pmatrix} =$ $\begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$

i.e. $4a + 2c = 6$ $\implies$ $2a + c = 3 \cdots (1)$

$-a+c = 0$ $\implies$ $a=c$ $\cdots$ (2)

$4b+2d=0$ $\implies$ $d = -2b$ $\cdots$ (3)

$-b+d=6$ $\cdots$ (4)

From equations (1) and (2) we have

$2c + c = 3$ $\implies$ $c=1$

Therefore, from equation (2), $a = 1$

From equations (3) and (4) we have

$-b-2b = 6$ $\implies$ $b=-2$

Therefore, from equation (3), $d=4$

$\therefore$ $M =$ $\begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$