Matrices

If $A = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1 \end{bmatrix}$, find $A^{-1}$.
Hence solve the system of equations
$3x+3y+2z=1$, $x+2y=4$, $2x-3y-z=5$


$\left|A\right| =$ $ \begin{vmatrix} 3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1 \end{vmatrix} = 3 \times \left(-2\right) -1 \times \left(-3+6\right) + 2 \times \left(-4\right) = -17 \neq 0 $ Therefore, $A^{-1}$ exists.

Cofactors of A are:
$A_{11} = \left(-1\right)^{1+1}$ $\begin{vmatrix} 2 & -3 \\ 0 & -1 \end{vmatrix}=-2$

$A_{12} = \left(-1\right)^{1+2}$ $\begin{vmatrix} 3 & -3 \\ 2 & -1 \end{vmatrix}=- \left(-3+6\right)=-3$

$A_{13} = \left(-1\right)^{1+3}$ $\begin{vmatrix} 3 & 2 \\ 2 & 0 \end{vmatrix}=-4$

$A_{21} = \left(-1\right)^{2+1}$ $\begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix}=-\left(-1\right)=1$

$A_{22} = \left(-1\right)^{2+2}$ $\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix}=-3-4=-7$

$A_{23} = \left(-1\right)^{2+3}$ $\begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix}=- \left(-2\right)=2$

$A_{31} = \left(-1\right)^{3+1}$ $\begin{vmatrix} 1 & 2 \\ 2 & -3 \end{vmatrix}=-3-4=-7$

$A_{32} = \left(-1\right)^{3+2}$ $\begin{vmatrix} 3 & 2 \\ 3 & -3 \end{vmatrix}=-\left(-9-6\right)=15$

$A_{33} = \left(-1\right)^{3+3}$ $\begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix}=6-3=3$

$\text{adj A}=$ $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}^t = $ $\begin{bmatrix} -2 & -3 & -4 \\ 1 & -7 & 2 \\ -7 & 15 & 3 \end{bmatrix}^t=$ $ \begin{bmatrix} -2 & 1 & -7 \\ -3 & -7 & 15 \\ -4 & 2 & 3 \end{bmatrix} $

$A^{-1} = \dfrac{\text{adj A}}{\left|A\right|} = \dfrac{-1}{17}$ $ \begin{bmatrix} -2 & 1 & -7 \\ -3 & -7 & 15 \\ -4 & 2 & 3 \end{bmatrix} $

Let $A_1 =$ $\begin{bmatrix} 3 & 3 & 2 \\ 1 & 2 & 0 \\ 2 & -3 & -1 \end{bmatrix}$, $B=$ $\begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$ and $X=$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Then $A_1 X = B \implies X = A_1^{-1}B$

But $A_1 = A^t$ (Comparing A and $A_1$)

Therefore, $X = \left(A^t\right)^{-1}B = \left(A^{-1}\right)^t B$ $\left[\text{Note: } \left(A^t\right)^{-1} = \left(A^{-1}\right)^t\right]$

$X= \dfrac{-1}{17}$ $\begin{bmatrix} -2 & 1 & -7 \\ -3 & -7 & 15 \\ -4 & 2 & 3 \end{bmatrix}^t$ $\begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} = \dfrac{-1}{17}$ $\begin{bmatrix} -2 & -3 & -4 \\ 1 & -7 & 2 \\ -7 & 15 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$

$= \dfrac{-1}{17}$ $\begin{bmatrix} -2-12-20 \\ 1-28+10 \\ -7+60+15 \end{bmatrix}$

$= \dfrac{-1}{17}$ $\begin{bmatrix} -34 \\ -17 \\ 68 \end{bmatrix}$

i.e. $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = $ $\begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix}$

$\implies x=2 \,, y =1 \,, z=-4$