Processing math: 100%

Determinants

By using properties of determinants prove that the determinant |asinxcosxsinxa1cosx1a| is independent of x.


Let Δ= |asinxcosxsinxa1cosx1a|

C1C1+C2Δ= |a+sinxsinxcosxasinxa11+cosx1a|

R1R1+R2,R2R2+aR3

Δ= |0a+sinx1+cosxacosxsinx01+a21+cosx1a|

Expanding along R1 gives Δ=(a+sinx)[a(acosxsinx)(1+a2)(1+cosx)]+(1+cosx)(acosxsinx)i.e. Δ=(a+sinx)(a2cosxasinx1cosxa2a2cosx)+acosxsinx+acos2xsinxcosxi.e. Δ=(a+sinx)(asinx+cosx+1+a2)acosxsinx+acos2xsinxcosxi.e. Δ=a2sinxacosxaa3+asin2x+sinxcosx+sinx+a2sinx+acosxsinx+acos2xsinxcosxi.e. Δ=a3 which is independent of x.