By using properties of determinants prove that the determinant |asinxcosx−sinx−a1cosx1a| is independent of x.
Let Δ=
|asinxcosx−sinx−a1cosx1a|
C1→C1+C2⟹Δ=
|a+sinxsinxcosx−a−sinx−a11+cosx1a|
R1→R1+R2,R2→R2+aR3⟹
Δ=
|0−a+sinx1+cosxacosx−sinx01+a21+cosx1a|
Expanding along R1 gives
Δ=−(−a+sinx)[a(acosx−sinx)−(1+a2)(1+cosx)]+(1+cosx)(acosx−sinx)i.e. Δ=−(−a+sinx)(a2cosx−asinx−1−cosx−a2−a2cosx)+acosx−sinx+acos2x−sinxcosxi.e. Δ=(−a+sinx)(asinx+cosx+1+a2)acosx−sinx+acos2x−sinxcosxi.e. Δ=−a2sinx−acosx−a−a3+asin2x+sinxcosx+sinx+a2sinx+acosx−sinx+acos2x−sinxcosxi.e. Δ=−a3 which is independent of x.