Determinants

If $\Delta = \begin{vmatrix} 1 & a & a^2 \\ a & a^2 & 1 \\ a^2 & 1 & a \end{vmatrix} = -4$, then find the value of $\begin{vmatrix} a^3 - 1 & 0 & a-a^4 \\ 0 & a-a^4 & a^3-1 \\ a-a^4 & a^3-1 & 0 \end{vmatrix}$


$\left[\text{Note: If } C_{ij} \text{ are the cofactors of } a_{ij} \text{ in } \left|A\right| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ \text{ then } \begin{vmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_23 \\ C_{31} & C_{32} & C_{33} \end{vmatrix} = \left|A\right|^2\right] $
Cofactors of determinant $\Delta$ are
$ C_{11} = \left(-1\right)^{1+1} \begin{vmatrix} a^2 & 1 \\ 1 & a \end{vmatrix} = a^3 - 1 $

$ C_{12} = \left(-1\right)^{1+2} \begin{vmatrix} a & 1 \\ a^2 & a \end{vmatrix} = a^2-a^2=0$

$C_{13} = \left(-1\right)^{1+3} \begin{vmatrix} a & a^2 \\ a^2 & 1 \end{vmatrix} = a - a^4$

$C_{21} = \left(-1\right)^{2+1} \begin{vmatrix} a & a^2 \\ 1 & a \end{vmatrix} = a^2 - a^2 = 0$

$C_{22} = \left(-1\right)^{2+2} \begin{vmatrix} 1 & a^2 \\ a^2 & a \end{vmatrix} = a - a^4$

$C_{23} = \left(-1\right)^{2+3} \begin{vmatrix} 1 & a \\ a^2 & 1 \end{vmatrix} = -\left(1-a^3\right) = a^3 - 1$

$C_{31} = \left(-1\right)^{3+1} \begin{vmatrix} a & a^2 \\ a^2 & 1 \end{vmatrix} = a - a^4$

$C_{32} = \left(-1\right)^{3+2} \begin{vmatrix} 1 & a^2 \\ a & 1 \end{vmatrix} = -\left(1-a^3\right) = a^3 - 1$

$C_{33} = \left(-1\right)^{3+3} \begin{vmatrix} 1 & a \\ a & a^2 \end{vmatrix} = a^2 - a^2 = 0$

Now, $\begin{vmatrix} a^3 - 1 & 0 & a-a^4 \\ 0 & a-a^4 & a^3-1 \\ a-a^4 & a^3-1 & 0 \end{vmatrix} = \begin{vmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{vmatrix}$

$\therefore$ $\begin{vmatrix} a^3 - 1 & 0 & a-a^4 \\ 0 & a-a^4 & a^3-1 \\ a-a^4 & a^3-1 & 0 \end{vmatrix} = \left|\Delta\right|^2 = \left(-4\right)^2 = 16$