Determinants

Using properties of determinants prove that $\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3$


Let $\Delta =$ $ \begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} $ $R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 - 3R_1 \implies \Delta =$ $ \begin{vmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & 3a & 7a+3b \end{vmatrix} $ $R_3 \rightarrow R_3 - 3R_2 \implies \Delta =$ $ \begin{vmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & 0 & a \end{vmatrix} $
Expanding along $R_1$ gives
$\Delta = a \times a \times a = a^3$